skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bauman, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract When plants die, neighbours escape competition. Living conspecifics could disproportionately benefit because they are freed from negative intraspecific processes; however, if the negative effects of past conspecific neighbours persist, other species might be advantaged, and diversity might be maintained through legacy effects. We examined legacy effects in a mapped forest by modelling the survival of 37,212 trees of 23 species using four neighbourhood properties: living conspecific, living heterospecific, legacy conspecific (dead conspecifics) and legacy heterospecific densities. Legacy conspecific effects proved nearly four times stronger than living conspecific effects; changes in annual survival associated with legacy conspecific density were 1.5% greater than living conspecific effects. Over 90% of species were negatively impacted by legacy conspecific density, compared to 47% by living conspecific density. Our results emphasize that legacies of trees alter community dynamics, revealing that prior research may have underestimated the strength of density dependent interactions by not considering legacy effects. 
    more » « less
  2. Abstract AimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. LocationAmazonia. TaxonAngiosperms (Magnoliids; Monocots; Eudicots). MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega‐phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white‐sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main ConclusionNumerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long‐standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions. 
    more » « less